Tuesday 2 April 2019

Moving average var


O DAX inclui algumas funções de agregação estatística, como média, variância e desvio padrão. Outros cálculos estatísticos típicos exigem que você escreva expressões DAX mais longas. Excel, deste ponto de vista, tem uma linguagem muito mais rica. Os Padrões Estatísticos são uma coleção de cálculos estatísticos comuns: mediana, modo, média móvel, percentil e quartil. Gostaríamos de agradecer a Colin Banfield, Gerard Brueckl e Javier Guilln, cujos blogs inspiraram alguns dos seguintes padrões. Exemplo de padrão básico As fórmulas neste padrão são as soluções para cálculos estatísticos específicos. Você pode usar funções padrão DAX para calcular a média (média aritmética) de um conjunto de valores. MÉDIA . Retorna a média de todos os números em uma coluna numérica. AVERAGEA. Retorna a média de todos os números em uma coluna, manipulando texto e valores não numéricos (valores de texto não-numérico e vazio são contados como 0). AVERAGEX. Calcular a média de uma expressão avaliada sobre uma tabela. Média móvel A média móvel é um cálculo para analisar pontos de dados, criando uma série de médias de diferentes subconjuntos do conjunto de dados completo. Você pode usar muitas técnicas DAX para implementar esse cálculo. A técnica mais simples é usar AVERAGEX, iterando uma tabela da granularidade desejada e calculando para cada iteração a expressão que gera o único ponto de dados a ser usado na média. Por exemplo, a fórmula a seguir calcula a média móvel dos últimos 7 dias, supondo que você está usando uma tabela Data no seu modelo de dados. Usando AVERAGEX, você calcula automaticamente a medida em cada nível de granularidade. Ao usar uma medida que pode ser agregada (como SUM), então outra abordagem baseada em CALCULATE pode ser mais rápida. Você pode encontrar essa abordagem alternativa no padrão completo de Moving Average. Você pode usar funções padrão DAX para calcular a variação de um conjunto de valores. VAR. S. Retorna a variância de valores em uma coluna que representa uma população de amostra. VAR. P. Retorna a variância de valores em uma coluna que representa toda a população. VARX. S. Retorna a variância de uma expressão avaliada sobre uma tabela representando uma população de amostra. VARX. P. Retorna a variância de uma expressão avaliada sobre uma tabela representando a população inteira. Desvio padrão Você pode usar funções DAX padrão para calcular o desvio padrão de um conjunto de valores. STDEV. S. Retorna o desvio padrão de valores em uma coluna que representa uma população de amostra. STDEV. P. Retorna o desvio padrão de valores em uma coluna que representa toda a população. STDEVX. S. Retorna o desvio padrão de uma expressão avaliada sobre uma tabela representando uma população de amostra. STDEVX. P. Retorna o desvio padrão de uma expressão avaliada sobre uma tabela representando a população inteira. A mediana é o valor numérico que separa a metade superior de uma população da metade inferior. Se houver um número ímpar de linhas, a mediana é o valor médio (ordenando as linhas do valor mais baixo ao valor mais alto). Se houver um número par de linhas, é a média dos dois valores médios. A fórmula ignora valores em branco, que não são considerados parte da população. O resultado é idêntico à função MEDIAN no Excel. A Figura 1 mostra uma comparação entre o resultado retornado pelo Excel ea fórmula DAX correspondente para o cálculo da mediana. Figura 1 Exemplo de cálculo mediano em Excel e DAX. O modo é o valor que aparece mais frequentemente em um conjunto de dados. A fórmula ignora valores em branco, que não são considerados parte da população. O resultado é idêntico às funções MODE e MODE. SNGL no Excel, que retornam apenas o valor mínimo quando existem vários modos no conjunto de valores considerados. A função Excel MODE. MULT retornaria todos os modos, mas você não pode implementá-lo como uma medida no DAX. A Figura 2 compara o resultado retornado pelo Excel com a fórmula DAX correspondente para o cálculo de modo. Figura 2 Exemplo de cálculo de modo em Excel e DAX. Percentil O percentil é o valor abaixo do qual uma dada porcentagem de valores em um grupo cai. A fórmula ignora valores em branco, que não são considerados parte da população. O cálculo no DAX requer várias etapas, descritas na seção Padrão completo, que mostra como obter os mesmos resultados das funções Excel PERCENTILE, PERCENTILE. INC e PERCENTILE. EXC. Os quartis são três pontos que dividem um conjunto de valores em quatro grupos iguais, cada grupo compreendendo um quarto dos dados. Você pode calcular os quartis usando o padrão Percentile, seguindo estas correspondências: Primeiro quartil quartil inferior 25º percentil Segundo quartil mediano 50º percentil Terceiro quartil quartil superior 75 percentil Padrão Completo Alguns cálculos estatísticos têm uma descrição mais longa do padrão completo, porque Você pode ter diferentes implementações dependendo de modelos de dados e outros requisitos. Média móvel Geralmente, você avalia a média móvel referenciando o nível de granularidade do dia. O modelo geral da seguinte fórmula tem estes marcadores: ltnumberofdaysgt é o número de dias para a média móvel. Ltdatecolumngt é a coluna de data da tabela de datas se você tiver uma ou a coluna de data da tabela contendo valores se não houver tabela de datas separada. Ltmeasuregt é a medida a calcular como a média móvel. O padrão mais simples usa a função AVERAGEX no DAX, que automaticamente considera apenas os dias para os quais há um valor. Como alternativa, você pode usar o modelo a seguir em modelos de dados sem uma tabela de datas e com uma medida que pode ser agregada (como SUM) durante todo o período considerado. A fórmula anterior considera um dia sem dados correspondentes como uma medida que tem 0 valor. Isso pode acontecer somente quando você tiver uma tabela de datas separada, que pode conter dias para os quais não há transações correspondentes. Você pode fixar o denominador para a média usando apenas o número de dias para o qual há transações usando o seguinte padrão, em que: ltfacttablegt é a tabela relacionada à tabela de datas e que contém valores calculados pela medida. Você pode usar as funções DATESBETWEEN ou DATESINPERIOD em vez de FILTER, mas elas funcionam apenas em uma tabela de data regular, enquanto que você pode aplicar o padrão descrito acima também para tabelas de datas não-regular e para modelos que não têm uma tabela de datas. Por exemplo, considere os diferentes resultados produzidos pelas duas medidas a seguir. Na Figura 3, você pode ver que não há vendas em 11 de setembro de 2005. No entanto, essa data está incluída na tabela Data, portanto, há 7 dias (de 11 de setembro a 17 de setembro) que têm apenas 6 dias com dados. Figura 3 Exemplo de cálculo da média móvel considerando e ignorando datas sem vendas. A medida Moving Average 7 Days tem um número menor entre 11 de setembro e 17 de setembro, porque considera 11 de setembro como um dia com 0 vendas. Se você quiser ignorar dias sem vendas, use a medida Moving Average 7 Days No Zero. Esta pode ser a abordagem certa quando você tem uma tabela de datas completa, mas você quer ignorar dias sem transações. Usando a fórmula Moving Average 7 Days, o resultado está correto porque AVERAGEX automaticamente considera apenas valores não em branco. Lembre-se de que você pode melhorar o desempenho de uma média móvel, persistindo o valor em uma coluna calculada de uma tabela com a granularidade desejada, como data ou data e produto. No entanto, a abordagem de cálculo dinâmico com uma medida oferece a capacidade de usar um parâmetro para o número de dias da média móvel (por exemplo, substituir ltnumberofdaysgt por uma medida implementando o padrão de Tabela de Parâmetros). A mediana corresponde ao percentil 50, que você pode calcular usando o padrão Percentile. No entanto, o padrão Median permite otimizar e simplificar o cálculo mediano usando uma única medida, em vez das várias medidas exigidas pelo padrão Percentile. Você pode usar essa abordagem ao calcular a mediana dos valores incluídos no ltvaluecolumngt, como mostrado abaixo: Para melhorar o desempenho, você pode querer persistir o valor de uma medida em uma coluna calculada, se você deseja obter a mediana para os resultados de Uma medida no modelo de dados. No entanto, antes de fazer essa otimização, você deve implementar o cálculo MedianX com base no modelo a seguir, usando esses marcadores: ltgranularitytablegt é a tabela que define a granularidade do cálculo. Por exemplo, pode ser a tabela Data se você deseja calcular a mediana de uma medida calculada no nível do dia ou pode ser VALUES (8216DateYearMonth) se você quiser calcular a mediana de uma medida calculada no nível do mês. Ltmeasuregt é a medida a calcular para cada linha de ltgranularitytablegt para o cálculo mediano. Ltmeasuretablegt é a tabela que contém os dados utilizados por ltmeasuregt. Por exemplo, se o ltgranularitytablegt é uma dimensão como 8216Date8217, então o ltmeasuretablegt será 8216Internet Sales8217 que contém a coluna Internet Sales Amount somado pela medida Internet Total Sales. Por exemplo, você pode escrever a mediana de Vendas totais da Internet para todos os clientes no Adventure Works da seguinte maneira: Dica O seguinte padrão: é usado para remover linhas de ltgranularitytablegt que não têm dados correspondentes na seleção atual. É uma maneira mais rápida do que usar a seguinte expressão: No entanto, você pode substituir toda a expressão CALCULATETABLE com apenas ltgranularitytablegt se você quiser considerar valores em branco do ltmeasuregt como 0. O desempenho da fórmula MedianX depende do número de linhas no Tabela iterada e sobre a complexidade da medida. Se o desempenho for ruim, você pode persistir o resultado de ltmeasuregt em uma coluna calculada do lttablegt, mas isso removerá a capacidade de aplicar filtros ao cálculo mediano no momento da consulta. O Percentile Excel tem duas implementações diferentes de cálculo de percentis com três funções: PERCENTILE, PERCENTILE. INC e PERCENTILE. EXC. Todos eles retornam o percentil K de valores, onde K está na faixa de 0 a 1. A diferença é que PERCENTILE e PERCENTILE. INC considerar K como um intervalo inclusivo, enquanto PERCENTILE. EXC considera a gama K 0 a 1 como exclusiva . Todas essas funções e suas implementações DAX recebem um valor percentil como parâmetro, que chamamos de valor de percentil K. ltKgt está na faixa de 0 a 1. As duas implementações DAX de percentil exigem algumas medidas que são semelhantes, mas diferentes o suficiente para exigir Dois conjuntos diferentes de fórmulas. As medidas definidas em cada padrão são: KPerc. O valor percentil corresponde a ltKgt. PercPos. A posição do percentil no conjunto de valores ordenados. ValueLow. O valor abaixo da posição percentil. Valor Alto. O valor acima da posição percentil. Percentil. O cálculo final do percentil. Você precisa das medidas ValueLow e ValueHigh no caso do PercPos contém uma parte decimal, porque então você tem que interpolar entre ValueLow e ValueHigh, a fim de retornar o valor percentil correto. A Figura 4 mostra um exemplo dos cálculos feitos com fórmulas Excel e DAX, usando ambos os algoritmos de percentil (inclusive e exclusivo). Figura 4 Cálculos de percentil usando fórmulas do Excel eo cálculo DAX equivalente. Nas seções a seguir, as fórmulas Percentile executam o cálculo em valores armazenados em uma coluna de tabela, DataValue, enquanto que as fórmulas PercentileX executam o cálculo em valores retornados por uma medida calculada em uma determinada granularidade. Percentile Inclusive A implementação de Percentile Inclusive é a seguinte. Percentile Exclusive A implementação do Percentile Exclusive é a seguinte. PercentileX Inclusive A implementação PercentileX Inclusive é baseada no seguinte modelo, usando esses marcadores: ltgranularitytablegt é a tabela que define a granularidade do cálculo. Por exemplo, pode ser a tabela Data se você quiser calcular o percentil de uma medida no nível do dia ou pode ser VALUES (8216DateYearMonth) se você quiser calcular o percentil de uma medida no nível do mês. Ltmeasuregt é a medida para calcular para cada linha de ltgranularitytablegt para o cálculo do percentil. Ltmeasuretablegt é a tabela que contém os dados utilizados por ltmeasuregt. Por exemplo, se o ltgranularitytablegt é uma dimensão tal como 8216Date, 8217 então o ltmeasuretablegt será 8216Sales8217 contendo a coluna Amount somada pela medida Total Amount. Por exemplo, você pode escrever o PercentileXInc do Valor Total de Vendas para todas as datas na tabela Data da seguinte forma: PercentileX Exclusive A implementação do PercentileX Exclusive é baseada no seguinte modelo, usando os mesmos marcadores usados ​​no PercentileX Inclusive: Por exemplo, você Pode escrever o PercentileXExc do montante total de vendas para todas as datas na tabela Data da seguinte forma: Mantenha-me informado sobre os próximos padrões (newsletter). Desmarque para baixar livremente o arquivo. Publicado em 17 de março de 2017 porMoving modelos de suavização média e exponencial Como um primeiro passo para ir além de modelos de média, modelos de caminhada aleatória e modelos de tendência linear, padrões não-sazonais e tendências podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tendem a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo escolhe grande parte do quotnoisequot na Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de horizonte mais longo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por volta dos pontos de inflexão por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em uma Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isto não é suposto ser óbvio, mas pode facilmente ser mostrado avaliando uma série infinita.) Daqui, a tendência média simples da tendência tende a retardar-se atrás dos pontos de giro por aproximadamente 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Portanto a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa apropriada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais do que um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dado por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Retornar ao início da página.) Vamos imaginar que temos uma matriz de inteiros como este: A média é obtida com a seguinte fórmula A (1n) xi (com i 1 a n). Então: x1n x2n. Xnn Nós dividimos o valor atual pelo número de valores e adicionamos o resultado anterior ao valor retornado. A assinatura de método de redução é A função de callback reduzir leva os seguintes parâmetros: p. Resultado do cálculo anterior c. Valor atual (do índice atual) i. Valor de índice de elementos de matriz atual a. O Array reduzido atual O segundo parâmetro reduce é o valor padrão. (Usado se o array estiver vazio). Assim, o método de redução média será: Se você preferir, você pode criar uma função separada E, em seguida, basta consultar a assinatura do método de retorno de chamada Ou Aumentar o protótipo Array diretamente. É possível dividir o valor cada vez que o método de redução é chamado. Ou melhor ainda. Usando o método Array. protoype. sum () previamente definido, otimizar o processo de chamar a divisão apenas uma vez :) Em seguida, em qualquer objeto Array do escopo: NB: uma matriz vazia com retorno um desejo NaN é mais correto do que 0 no meu Ponto de vista e pode ser útil em casos de uso específicos.

No comments:

Post a Comment